Introduction

Sanitary pneumatic 3 way ball valves has been through the sophisticated inspection process and strict quality management. Using internal and external polishing and sterilization. Clamp quick connection, all-inclusive seal, easy to disassemble,cleaning and maintenance. Three-way sanitary ball valve for sanitarypipelines medium commutation, diversion, confluence, mixed flow. They can be manually operated or automated with an electric or pneumatic actuator.

Pneumatic Actuator

Double acting	Air to open, air to close, air supply failure to keep the current position
Single Acting N/C	Air to open, interrupt air to close, air failure to close
Single Acting N/O	Air to close, interrupt air to open, air failure to open
Optional accessory	Reversing solenoid valve, limit switch box, air filter reducing valve, positioner, handle manual, lock up valve

Technical Parameters

	Body		Valve components	
Nominal Size	DN15~DN100	Seat Material	PTFE: -30 C $\sim 120 \mathrm{C}$	
Body Material	SS304, SS316, SS316L	Disc Material	SS304, SS316, SS316L	
Connection Type	Clamp, Welding	Stem Material	SS304,	
Pressure Rating	PN1.6MPa	Design Standard	ISO, DIN, IDF, SMS, 3A	
Structure type	Floating ball core 3 way L-type/ T-type ball valve	Applicable Medium	Food, Medicine, Packaging Machinery, Filling Machinery And Other Health Conditions Using Level.	

T-Pattern Flow Direction Diagram

Qutine Size drawing

Size	$3 / 4^{\prime \prime}$	$1 "$	$1-1 / 4^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	$2^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	$3 "$	$3-1 / 2^{\prime \prime}$	$4^{\prime \prime}$
	$\emptyset 19$	$\emptyset 25$	$\varnothing 32$	$\varnothing 38$	$\varnothing 51$	$\varnothing 63$	$\emptyset 76$	$\varnothing 89$	$\emptyset 102$
d	16.5	22	28.5	35	47.5	58.2	72	84.8	98.3
D	50.5	50.5	50.5	50.5	64	77.5	91	106	119
L	105	126	137	155	184	184	220	240	266
L1	60	61.5	69	77	90	92	122	135	150
H	45	48	52.5	65	74	84	102	112	122

L-Pattern Flow Direction Diagram

Note: Tolerance of data L is $+2 /-0$

Maintenance

- Tightening the seal between the valve and the actuator:

Remove the four bolts underneath the actuator.
Separate the actuator from the valve.
Tighten the nut on the top of the valve body.
Place the actuator back on the valve and screw everything back into place.

- Tightening the seals between the valve and the inlet/outlet ports:

Remove the torque bolts and check for any debris or damage to the gaskets.

Use a torque wrench or other consistent method of tightening the torque bolts to reconnect the inlet and outlet ports.

Introduction

1. Operating media: Dry or lubricated air, or the non-corrosive gases The maximum particle diameter must less than 30 u m
2. Air supply pressure: The minimum supply pressure is 2.5 Bar The maximum supply pressure is 8 Bar
3. Operating temperature: Standard: $-20^{\circ} \mathrm{c} \sim+80^{\circ} \mathrm{c}$ Low temperature: $-35^{\circ} \mathrm{c} \sim+80^{\circ} \mathrm{c} \quad$ High temperature: $-15^{\circ} \mathrm{c} \sim \mathrm{M} 50^{\circ} \mathrm{c}$
4. Travel adjustment: Have adjustment range of $\pm 5^{\circ}$ for the rotation at 0° and 90°

Qutline Size drawing

MODEL	A	B	C	D	E	F	G	H	J	K	N	M	L	P	Z	Air Hole
AT52	30	42.5	65.5	72.4	92.5	50.5	30	80	$\varnothing 36$	$\varnothing 50$	M5 $\times 8$	M6× 10	150	42	14	NAMUR G1/4"
AT63	36	47	81	88.5	98.5	69.5	30	80	$\varnothing 50$	$\varnothing 70$	M6 $\times 10$	M 8×13	171	42	18	NAMUR G1/4"
AT75	42.5	53	93	100	120	78	30	80	$\varnothing 50$	$\varnothing 70$	M6 $\times 10$	M 8×13	186	42	18	NAMUR G1/4"
AT83	46.5	57	98.5	109.7	129.5	86	30	80	$\varnothing 50$	$\varnothing 70$	M6 $\times 10$	M8×13	206	42	21	NAMUR G1/4"
AT92	50	58	106	117	137	90	30	80	$\varnothing 50$	$\varnothing 70$	M6 $\times 10$	M 8×13	265	42	21	NAMUR G1/4"
AT105	57.5	64	122.5	135	155	104.5	30	80	$\varnothing 70$	$\varnothing 102$	M8× 13	M10 $\times 16$	272	42	27	NAMUR G1/4"
At125	67.5	74.5	145.5	157	177	120.5	30	80	$\varnothing 70$	$\varnothing 102$	M8× 13	M10 $\times 16$	304	60	27	NAMUR G1/4"
AT140	75.5	75.5	161	174	194	125	30	80	$\varnothing 102$	$\varnothing 125$	M10 $\times 16$	M12 $\times 20$	395	60	32	NAMUR G1/4"
AT160	87	87	184	198	228	143	30	80	$\varnothing 102$	8125	M10×16	$\mathrm{M} 12 \times 20$	462	60	32	NAMUR G1/4"
AT190	103	103	216	232	262	172	30	130	$\varnothing 102$	8140	M10×16	M16 $\times 25$	520	85	40	NAMUR G1/4"
AT210	113	113	235.5	257	287	194	30	130	$\varnothing 102$	$\varnothing 140$	M10×16	M16 $\times 25$	538	85	40	NAMUR G1/4"
AT240	130	130	235.5	292	322	230	30	130		$\varnothing 165$		$\mathrm{M} 20 \times 30$	592	90	50	NAMUR G1/4"
AT270	147	147	235.5	331	361	253	30	130		$\varnothing 165$		$\mathrm{M} 20 \times 30$	713	90	50	NAMUR G1/2"
AT300	161	168	235.5	354	384	290	30	130	$\varnothing 165$	$\varnothing 215$	$\mathrm{M} 20 \times 30$	$\mathrm{M} 20 \times 30$	771	90	50	NAMUR G1/2"

Common faults and inspection, troubleshooting

Failure Phenomenon	Inspection Items	Solution
Pneumatic Valve Can Not Move	The electromagnetic valve is normal, Coil is bumed, electromagnetic valve Is stuck being stolen	Solenoid valve replacement, Replacement coils, remove stolen Property.
	A separate air supply pneumatic Actuator test check seals and Whether the cylinderis damaged.	Replace a bad ring and cylinder.
	There are impurities in the spool Valve stuck.	Remove impurities, replace Damaged parts.
	the handle in a manual hand motor location.	Interchange
Slow Motion, Crawling	Supply pressure is not enough.	The increase of gas supply pressure(0 4-0.7mpa)
	Pneumatic actuator outputtorque is Too small.	Increase the pneumatic actuator Production.
	The valve spool or valve assembly too tight.	Re-assembly adjustments.
	Air supply pipe plug, flow is toosmall.	Exclude plug, replace the filter cartridge.
Reply Devices Without Signal	power line short circuit or open circuit.	Maintenance of power lines.
	reply within the cam position is not accurate.	Adjust the cam to the correct location
	Micro switch damaged.	Replacement micro switch

